Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Collapsars—rapidly rotating stellar cores that form black holes—can power gamma-ray bursts and are proposed to be key contributors to the production of heavy elements in the Universe via the rapid neutron capture process (r-process). Previous neutrino-transport collapsar simulations have been unable to unbind neutron-rich material from the disk. However, these simulations have not included sufficiently strong magnetic fields and the black hole (BH), both of which are essential for launching mass outflows. We presentνh-amr, a novel neutrino-transport general relativistic magnetohydrodynamic (νGRMHD) code, which we use to perform the first 3D globalνGRMHD collapsar simulations. We find a self-consistent formation of a weakly magnetized dense accretion disk, which has sufficient time to neutronize. Eventually, substantial magnetic flux accumulates near the BH, becomes dynamically important, leads to a magnetically arrested disk (MAD), and unbinds some of the neutron-rich material. However, the strong flux also hinders accretion, lowers density, and increases neutrino-cooling timescale, which prevents further disk neutronization. Typical collapsar progenitors with mass accretion rates, , do not produce significant neutron-rich (Ye < 0.25) ejecta. However, we find that MADs at higher mass accretion rates, (e.g., for more centrally concentrated progenitors), can unbindMej ≲ M⊙of neutron-rich ejecta. The outflows inflate a shocked cocoon that mixes with the infalling neutron-poor stellar gas and raises the final outflowYe; however, the finalr-process yield may be determined earlier at the point of neutron capture freeze-out. Future work will explore under what conditions more typical collapsar engines becomer-process factories.more » « lessFree, publicly-accessible full text available May 21, 2026
- 
            Abstract The recent detections of the ∼10 s longγ-ray bursts (GRBs) 211211A and 230307A followed by softer temporally extended emission (EE) and kilonovae point to a new GRB class. Using state-of-the-art first-principles simulations, we introduce a unifying theoretical framework that connects binary neutron star (BNS) and black hole–NS (BH–NS) merger populations with the fundamental physics governing compact binary GRBs (cbGRBs). For binaries with large total masses,Mtot≳ 2.8M⊙, the compact remnant created by the merger promptly collapses into a BH surrounded by an accretion disk. The duration of the pre-magnetically arrested disk (MAD) phase sets the duration of the roughly constant power cbGRB and could be influenced by the disk mass,Md. We show that massive disks (Md≳ 0.1M⊙), which form for large binary mass ratiosq≳ 1.2 in BNS orq≲ 3 in BH–NS mergers, inevitably produce 211211A-like long cbGRBs. Once the disk becomes MAD, the jet power drops with the mass accretion rate as , establishing the EE decay. Two scenarios are plausible for short cbGRBs. They can be powered by BHs with less massive disks, which form for otherqvalues. Alternatively, for binaries withMtot≲ 2.8M⊙, mergers should go through a hypermassive NS (HMNS) phase, as inferred for GW170817. Magnetized outflows from such HMNSs, which typically live for ≲1 s, offer an alternative progenitor for short cbGRBs. The first scenario is challenged by the bimodal GRB duration distribution and the fact that the Galactic BNS population peaks at sufficiently low masses that most mergers should go through an HMNS phase.more » « less
- 
            Abstract The ongoing LIGO–Virgo–KAGRA observing run O4 provides an opportunity to discover new multimessenger events, including binary neutron star (BNS) mergers such as GW170817 and the highly anticipated first detection of a multimessenger black hole–neutron star (BH–NS) merger. While BNS mergers were predicted to exhibit early optical emission from mildly relativistic outflows, it has remained uncertain whether the BH–NS merger ejecta provides the conditions for similar signals to emerge. We present the first modeling of early near-ultraviolet/optical emission from mildly relativistic outflows in BH–NS mergers. Adopting optimal binary properties, a mass ratio ofq= 2, and a rapidly rotating BH, we utilize numerical relativity and general relativistic magnetohydrodynamic (GRMHD) simulations to follow the binary’s evolution from premerger to homologous expansion. We use an M1 neutrino transport GRMHD simulation to self-consistently estimate the opacity distribution in the outflows and find a bright near-ultraviolet/optical signal that emerges due to jet-powered cocoon cooling emission, outshining the kilonova emission at early time. The signal peaks at an absolute magnitude of ∼−15 a few hours after the merger, longer than previous estimates, which did not consider the first principles–based jet launching. By late 2024, the Rubin Observatory will have the capability to track the entire signal evolution or detect its peak up to distances of ≳1 Gpc. In 2026, ULTRASAT will conduct all-sky surveys within minutes, detecting some of these events within ∼200 Mpc. The BH–NS mergers with higher mass ratios or lower BH spins would produce shorter and fainter signals.more » « less
- 
            Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger tor≳ 1011cm. The disk that forms after a merger of mass ratioq= 2 ejects massive disk winds (3–5 × 10−2M⊙). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asLj∼t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ0> 100 retain significant magnetization (σ≫ 1) atr> 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
